Injection Flaws:
Stop Validating Your Input

Michael J. Pomraning, CISSP
SecurePipe, Inc.

BlackHat USA
2005

Injection Flaws Overview

Where Are We? What Are We Talking About?

" S
What Are We Talking About?

m |njection flaws
Weakness in an application whereby foreign
input subverts the otherwise legitimate use of a
subsystem.
m Different subsystems == different flaws
RDBMS: SQL Injection
Web browser: Cross-Site Scripting (XSS)
OS Shell: Command Injection
“Self-same” subsystems (SSI injection, evil eval)
m Our focus: two most prevalent external
subsystem injection attacks

* J
SQL Injection

SQL Injection is an attack technique used to exploit web
sites that construct SQL statements from user-supplied
input.

- V’l%b Application Security Consortium

m Long history
1998 debut (Phrack 54)
In bloom in late 2001
Stream of advisories: QDAV-2001-7-2, RUS-CERT 2001-08:01,
RUS-CERT 2001-09:01, ...
m Diverse impact
Data C.1.A. attacks, application subversion

Server compromise: remote command execution, Java class
uploads, stored procedure overflows, &c.

" S
XSS (a.k.a. HTML Injection)

Cross-site scripting allows a bad guy to trick an
innocent guy into running code the bad guy wrote.
- Lincoln Stein

quoted in “Cross-site scripting’ tears holes in Net Security,” USA
Today. 30 Aug 2001.

m On all radars in late 1999.
Famed CERT advisory in Feb. 2000
References back to 1997
m Low-hanging fruit
Passé, damning or both?
Attacks the mediation between app and end-user

= J
Conventional Wisdom

m |njection flaws are “Input Validation Errors”
Commonsense, pervasive taxonomy
m SecurityFocus BID classifications
» Language of vendor advisories

e.g., CAN-2005-0040, CAN-2005-1525 advisories

Old, familiar refrain: Validate your input!

m Emphasizes incoming trust boundary
Protect the (application) perimeter

m Let’s look more closely at validation

Rethinking Input
Validation

* JE
Validation Missteps (1/2)

m Undesirable dataset restrictions

“DOMAIN\username” “What if x’' < y?”
Predictable debate: whitelist or blacklist?
m Regex rex

Regexes get complicated quickly
Cargo-cult practices
m Validating the wrong thing at the wrong time

Validation != canonicalization
http://doof.us/vuln.cgi?input=%3Cscript%3E...

Data type constraints v. output metacharacters

" J
Validation Missteps (2/2)

m Pre-encoded attack

XSS Filter Bypass
€.J.,

RDBMS Encoding Schemes
= Quoting/escaping conventions
= Hex literals and interpolated variables

Attackers know your output better than you do!
m Lacking precognition
Deferred, second-order attacks

Output subsystem variety, changes
Input sources change: $ REQUEST or $_GET ?

= JE
Validation In Practice

m Often honored in breach
Validation is inspectional
Few have patience, error-handling
What then? Mogrify!

m “The best practice is to strip special characters...”
m “3 models for data validation: accept, reject, sanitize.”
m “s/the_bad_stuff//;”

m Client-side practices migrated server-side
A step forward
Focused on obvious trust boundary, attacker-facing
Divorced from vulnerable subsystems

m Conflation of terms:
stripping, sanitizing, filtering, validating

"
Turning It Around...

m Not input, but output
Last chance to defend.
m Not validation, but presentation
Form of output, rather than content.
m Desirable characteristics
Discrete, tactical coding practices
Opaque data handling
API abstraction conceals mechanics
Remember format string vulnerabilities?

Defense Techniques

Lessons Learnt From Layer 6

* J
SQL Injection: Bind Variables

m Related terms: placeholders, prepared
statements, precompiled query plans,
parameterized queries

m Proper syntactical interpolation:

SELECT secret FROM tbl WHERE user=?;

“?” becomes safe SQL scalar, whether it is “jdoe”
or“’ OR 1=1"

m Variations and Limitations
m Database-independent APIs preferred

- S
Bind Variables: JDBC

= JDBC 3.0

http://java.sun.com/j2se/1.4.2/docs/guide/jdbc/
PreparedStatement p =

con.prepareStatement ("SELECT secret FROM
tbl WHERE user=? AND passhash=?");
p.setString(l, username);
p.setString (2, hashedpass);

m Allows named parameters for
CallableStatement (Stored
procedure) execution.

- S
Bind Variables: ODBC

= ODBC

http://msdn.microsoft.com/
library/en-us/odbc/htm/odbcabout_this_manual.asp

r = SQLPrepare (hstmt, “SELECT * FROM tbl WHERE user=? AND passhash=?",
SQL NTS) ;

SOLBindParameter (hstmt, 1, SQL_PARAM INPUT, SQL_C_CHAR, USERNAME LEN, 0,
szUser, 0, &cbUser);

SQLBindParameter (hstmt, 2, SQL_PARAM INPUT, SQL C_CHAR, HASHPASS LEN, O,
szPass, 0, &cbPass);

SQLExecute (hstmt) ;

m Other ODBC interfaces more tolerable.

Bind Variables: Perl

m Perl DBI

http://dbi.perl.org

my S$stmt = Sdbh->prepare (V“SELECT secret
FROM tbl WHERE user=? AND passhash=?");
Sstmt->execute ($Susername, S$hashedpass);

m Individual drivers may expose named
placeholder functionality (e.g., DBD: : Pg).

» S
Bind Variables: PHP

= PEAR DB API

http://pear.php.net/package/DB
Ssth = $db->prepare (“SELECT * FROM tbl
WHERE user=? AND passhash=?");

$params = array(Susername, S$hashed);
$sth->execute ($params) ;
m ADOdb

http://adodb.sourceforge.net/
Well-regarded 3rd-party abstraction library.

"
Bind Variables: Python

m DB API 2.0

userInp = {‘user’:..., ‘hashed’:...}

c = dbconn.cursor ()

c.execute ('SELECT * FROM tbl WHERE
user=% (user)s AND passhash=% (hashed)s’,
userInput)

m Specification allows multiple styles of
parameter markers.

* JE
XSS: Output Encoding (1/2)

m Simple Examg
Double Choco Latte BID 12894

diff -ruN dcl-0.9.4.3/inc/functions.inc.php \
dcl-0.9.4.4/inc/functions.inc.php

--— dcl-0.9.4.3/inc/functions.inc.php 2005-03-23 19:38:12 -0600
+++ dcl-0.9.4.4/inc/functions.inc.php 2005-03-23 22:02:50 -0600
@@ -173,14 +173,14 @@

import ($class);

if (!class_exists($class)
{
print ('Invoke could not find class: ' . S$class);
+ print ('Invoke could not find class: ' . htmlspecialchars (Sclass)
)i
return;

}

* JE
XSS: Output Encoding (1/2)

m Long-known, little advocated

m Encode just prior to output
Everything and everywhere
Fix Content-Type, double-quote attributes

m Templating system
URI and HTML encoding.

m Remarks on HTML-permissive CMS

" J
Concluding Remarks

m Bind variables; output encoding

m Bake into coding guidelines, QA
processes and documentation

m Bind variables; output encoding
m |dentify trust boundaries
m Bind variables; output encoding

m Validate your input!
Be precise in terminology
What is being validated, where and why?

Questions?

After the conference:

" A
Selected Materials (1/2) — Caveat lector!

= Anley, Chris. “Advanced SQL Injection In SQL Server Applications.” NGSSoftware Insight
Security Research papers. Jan 2002.

= Anley, Chris. “(more) Advanced SQL Injection.” NGSSoftware Insight Security Research papers.
Jun 2002.

s CERT/CC. “CA-2000-02 Malicious HTML Tags Embedded in Client Web Requests.” Advisory
CA-2000-02. 3 Feb 2000.

s CERT/CC. “Understanding Malicious Content Mitigation for Web Developers.” CERT Tech Tips.
2 Feb 2000.

m Cgisecurity.com. “The Cross Site Scripting FAQ.” Cgisecurity.com article. Aug 2003.

m Clover, Andrew. “Re: GOBBLES SECURITY ADVISORY #33.” Bugtraq mailing list post. 11 May
2002.

Message-ID <20020511150446.A2580@doxdesk.com>

m Endler, David. “The Evolution of Cross-Site Scripting Attacks.” iDEFENSE, Inc. whitepaper. 20
May 2002.

m Foster, James C. “Defense tactics for SQL injection attacks.” SearchSecurity.com Tips &
Newsletters, Network Security Tactics. 21 Mar 2005.

= Friedl, Stephen J. “SQL Injection Attacks By Example.” Unixwiz.net Tech Tips. Last Mod. 13 Jan
2005.
= GOBBLES “GOBBLES SECURITY ADVISORY #33.” Bugtraq mailing list post. Mod./Fwd. Dave

Ahmad. 11 May 2002.
Message-ID <Pine.LNX.4.43.0205100832290.18396-100000@mail.securityfocus.com>

* J
Selected Materials (2/2) — Caveat lector!
m Hu, Deyu. “Preventing Cross-Site Scripting Vulnerability.” GIAC GSEC Practical. 4 May 2004.

m Huseby, Sverre H. “Incompatible Parameter Parsing.” Huseby technical paper. 29 Apr 2005.

= informIT. “Unexpected Input.” informIT Security Reference Guide, “Web Application Security”
chapter. 26 May 2005.

m Lee, Paul S. “Cross-site scripting: Use a custom tag library to encode dynamic content.” IBM
developerWorks. 1 Sep 2002.

m Microsoft Corporation. “Web Security Threats and Countermeasures.” Microsoft Patterns and
Practices Collection. Jan 2004.

m Monsch, Jan P. et. al. “Re: ISA Server and SQL Injection.” WebApp Sec mailing list. 3 Mar
2005.
Archived at:

Ollmann, Gunter. “Second-order Code Injection Attacks.” NGSSoftware Insight Security
Research papers. Nov 2004.

m OWASP. “A Guide to Building Secure Web Applications and Web Services.” The Open Web
Application Security Project. 6 Jun 2005.

m Rain Forest Puppy. “NT Web Technology Vulnerabilities.” Phrack Magazine Vol. 54. 25 Dec
1998.

m Spett, Kevin. “SQL Injection: Are your Web applications vulnerable?” SPI Dynamics, Inc.
whitepaper. 2002.

